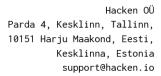


SMART CONTRACT CODE REVIEW AND SECURITY ANALYSIS REPORT

Customer: StrongBlock

Date: December 08th, 2021



This document may contain confidential information about IT systems and the intellectual property of the Customer as well as information about potential vulnerabilities and methods of their exploitation.

The report containing confidential information can be used internally by the Customer, or it can be disclosed publicly after all vulnerabilities are fixed — upon a decision of the Customer.

Document

Name	Smart Contract Code Review and Security Analysis Report for		
	StrongBlock.		
Approved by	Andrew Matiukhin CTO Hacken OU		
Туре	Staking		
Platform	Ethereum / Solidity		
Methods	Architecture Review, Functional Testing, Computer-Aided		
	Verification, Manual Review		
B	,		
Repository	https://github.com/StrongBlock/service2.contract		
Commit	8981673b4000b3b10cf627db9b25019fd728b0ee		
Technical	NO NO		
Documentation			
JS tests	NO		
Website	strongblock.com		
Timeline	29 NOVEMBER 2021 - 08 DECEMBER 2021		
Changelog	02 DECEMBER 2021 - INITIAL AUDIT		
	08 DECEMBER 2021 - Second Review		
	OO DECEMBER 2021 OCCORD RETIEM		

Table of contents

Introduction	
Scope	4
Executive Summary	5
Severity Definitions	8
Audit overview	9
Conclusion	11
Disclaimers	12

Introduction

Hacken OÜ (Consultant) was contracted by StrongBlock (Customer) to conduct a Smart Contract Code Review and Security Analysis. This report presents the findings of the security assessment of the Customer's smart contract and its code review conducted between November 29^{th} , 2021 - December 2^{nd} , 2021.

Second review conducted on December 8th, 2021.

Scope

```
The scope of the project is smart contracts in the repository:
Repository:
      https://github.com/StrongBlock/service2.contract
Commit:
      8981673b4000b3b10cf627db9b25019fd728b0ee
Technical Documentation: No
JS tests: No
Contracts:
      MultiNodeV1.sol
      interfaces/IERC20.sol
      interfaces/IStrongPool.sol
      interfaces/IStrongNFTBonus.sol
      interfaces/IAdminControl.sol
      lib/AdminAccess.sol
      lib/MultiNodeSettings.sol
      lib/SbMath.sol
      lib/Context.sol
      lib/InternalCalls.sol
```

We have scanned this smart contract for commonly known and more specific vulnerabilities. Here are some of the commonly known vulnerabilities that are considered:

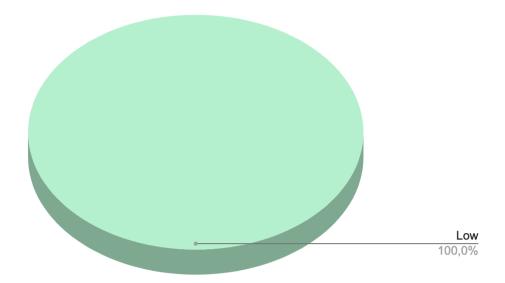
Category	Check Item	
Code review	Reentrancy	
	Ownership Takeover	
	Timestamp Dependence	
	Gas Limit and Loops	
	DoS with (Unexpected) Throw	
	DoS with Block Gas Limit	
	 Transaction-Ordering Dependence 	
	Style guide violation	
	Costly Loop	
	ERC20 API violation	
	Unchecked external call	
	Unchecked math	
	Unsafe type inference	
	Implicit visibility level	
	Deployment Consistency	
	Repository Consistency	
	Data Consistency	
Functional review		
	 Business Logics Review 	
	 Functionality Checks 	
	Access Control & Authorization	
	Escrow manipulation	
	Token Supply manipulation	
	Assets integrity	
	User Balances manipulation	
	 Data Consistency manipulation 	
	Kill-Switch Mechanism	
	Operation Trails & Event Generation	

Executive Summary

According to the assessment, the Customer's smart contracts are well-secured.

Insecure	Poor secured	Secured	Well-secured
		You are he	re

Our team performed an analysis of code functionality, manual audit, and automated checks with Mythril and Slither. All issues found during automated analysis were manually reviewed, and important vulnerabilities are presented in the Audit overview section. All found issues can be found in the Audit overview section.



As a result of the audit, security engineers found 4 low severity issues.

After second review security engineers found 1 low severity issue.

Graph 1. The distribution of vulnerabilities after the audit.

Severity Definitions

Risk Level	Description	
Critical	Critical vulnerabilities are usually straightforward to exploit and can lead to assets loss or data manipulations.	
High	High-level vulnerabilities are difficult to exploit; however, they also have a significant impact on smart contract execution, e.g., public access to crucial functions	
Medium	Medium-level vulnerabilities are important to fix; however, they can't lead to assets loss or data manipulations.	
Low	Low-level vulnerabilities are mostly related to outdated, unused, etc. code snippets that can't have a significant impact on execution	

Audit overview

■ ■ ■ Critical

No critical issues were found.

High

No high severity issues were found.

■ Medium

No medium severity issues were found.

Low

1. ETH could be locked.

In case param _returnValue is **false** and msg.value is bigger than the calculated fee, the contract will accumulate ETH, but there is no way to withdraw.

Contract: MultiNodeV1.sol

Functions: pay, claim

Recommendation: remove param _returnValue and unconditionally send reminder back to the caller or add the ability to withdraw ETH

Status: fixed

2. Boolean equality

Boolean constants can be used directly and do not need to be compared to true or false.

Contracts: MultiNodeV1.sol

Functions: migrateNode

Recommendation: remove the equality to the boolean constant.

Status: fixed

3. Missing events for changing nodeTypeActive[], nodeTypeSettings[][], nodeTypeNFTBonus[][], strongNFTBonus, serviceContractEnabled[] and for method migrateNode

Contracts: MultiNodeSettings.sol, MultiNodeV1.sol

Functions: setNodeTypeActive, setNodeTypeSetting, setNodeTypeNFTBonus, setNFTBonusContract, setServiceContractEnabled, migrateNode

Changing critical values should be followed by the event emitting for better tracking off-chain.

www.hacken.io

Recommendation: Please emit events on the critical values changing.

Status: fixed

4. No tests were provided.

It's recommended to cover all non-trivial contracts with tests.

The recommended coverage is minimum 95% for branches, while it should be definitely 100% for the main logic contracts.

Conclusion

Smart contracts within the scope were manually reviewed and analyzed with static analysis tools.

The audit report contains all found security vulnerabilities and other issues in the reviewed code.

As a result of the audit, security engineers found 4 low severity issues.

After second review security engineers found 1 low severity issue.

Disclaimers

Hacken Disclaimer

The smart contracts given for audit have been analyzed in accordance with the best industry practices at the date of this report, in relation to cybersecurity vulnerabilities and issues in smart contract source code, the details of which are disclosed in this report (Source Code); the Source Code compilation, deployment, and functionality (performing the intended functions).

The audit makes no statements or warranties on the security of the code. It also cannot be considered as a sufficient assessment regarding the utility and safety of the code, bug-free status, or any other statements of the contract. While we have done our best in conducting the analysis and producing this report, it is important to note that you should not rely on this report only — we recommend proceeding with several independent audits and a public bug bounty program to ensure the security of smart contracts.

Technical Disclaimer

Smart contracts are deployed and executed on a blockchain platform. The platform, its programming language, and other software related to the smart contract can have vulnerabilities that can lead to hacks. Thus, the audit can't guarantee the explicit security of the audited smart contracts.