

Customer: StrongBlock
Date: November 23rd, 2021

www.hacken.io

This document may contain confidential information about IT
systems and the intellectual property of the Customer as well as
information about potential vulnerabilities and methods of their
exploitation.

The report containing confidential information can be used
internally by the Customer, or it can be disclosed publicly after
all vulnerabilities are fixed — upon a decision of the Customer.

Document

Name Smart Contract Code Review and Security Analysis Report for
StrongBlock.

Approved by Andrew Matiukhin | CTO Hacken OU
Type Staking
Platform Ethereum / Solidity
Methods Architecture Review, Functional Testing, Computer-Aided

Verification, Manual Review
Repository https://github.com/StrongBlock/eth2.pool.contract
Commit ea3eb31067b2cf193e98bfdd310d89807df9eb21
Technical
Documentation

NO

JS tests NO
Website strongblock.com
Timeline 09 NOVEMBER 2021 – 23 NOVEMBER 2021
Changelog 12 NOVEMBER 2021 – INITIAL AUDIT

19 NOVEMBER 2021 – SECOND REVIEW
23 NOVEMBER 2021 – THIRD REVIEW

www.hacken.io

Table of contents

Introduction 4

Scope 4

Executive Summary 6

Severity Definitions 7

Audit overview 8

Conclusion 10

Disclaimers 11

 	

www.hacken.io

Introduction

Hacken OÜ (Consultant) was contracted by StrongBlock (Customer) to conduct
a Smart Contract Code Review and Security Analysis. This report presents the
findings of the security assessment of the Customer's smart contract and its
code review conducted between November 9th, 2021 - November 12th, 2021.

Second review conducted on November 19th, 2021.

Third review conducted on November 23rd, 2021.

Scope

The scope of the project is smart contracts in the repository:
Repository:

https://github.com/StrongBlock/eth2.pool.contract
Commit:

ea3eb31067b2cf193e98bfdd310d89807df9eb21
Technical Documentation: No
JS tests: No
Contracts:

Context.sol
ETHPool.sol
ETHPoolInterface.sol
IERC20.sol
Ownable.sol
PlatformFees.sol
PlatformFeesInterface.sol
ReentrancyGuard.sol
SafeMath.sol

www.hacken.io

We have scanned this smart contract for commonly known and more specific
vulnerabilities. Here are some of the commonly known vulnerabilities that
are considered:

Category Check Item
Code review ▪ Reentrancy

▪ Ownership Takeover

▪ Timestamp Dependence
▪ Gas Limit and Loops
▪ DoS with (Unexpected) Throw

▪ DoS with Block Gas Limit
▪ Transaction-Ordering Dependence

▪ Style guide violation
▪ Costly Loop

▪ ERC20 API violation
▪ Unchecked external call

▪ Unchecked math
▪ Unsafe type inference

▪ Implicit visibility level
▪ Deployment Consistency

▪ Repository Consistency
▪ Data Consistency

Functional review

▪ Business Logics Review
▪ Functionality Checks

▪ Access Control & Authorization
▪ Escrow manipulation

▪ Token Supply manipulation
▪ Assets integrity

▪ User Balances manipulation
▪ Data Consistency manipulation

▪ Kill-Switch Mechanism
▪ Operation Trails & Event Generation

	

www.hacken.io

Executive Summary

According to the assessment, the Customer's smart contracts are well-secured. 	

Our team performed an analysis of code functionality, manual audit, and
automated checks with Mythril and Slither. All issues found during automated
analysis were manually reviewed, and important vulnerabilities are presented
in the Audit overview section. All found issues can be found in the Audit
overview section.

As a result of the audit, security engineers found 1 high and 3 low severity
issues.

After the second review security engineers found that all previously found
issues were fixed but 1 high severity issue was added to the code.

After the third review security engineers found that all issues were
addressed.

You are here

Insecure Poor secured Secured Well-secured

www.hacken.io

Severity Definitions

Risk Level Description

Critical
Critical vulnerabilities are usually straightforward to
exploit and can lead to assets loss or data
manipulations.

High

High-level vulnerabilities are difficult to exploit;
however, they also have a significant impact on smart
contract execution, e.g., public access to crucial
functions

Medium
Medium-level vulnerabilities are important to fix;
however, they can't lead to assets loss or data
manipulations.

Low
Low-level vulnerabilities are mostly related to
outdated, unused, etc. code snippets that can't have
a significant impact on execution

	

www.hacken.io

Audit overview

 Critical

No critical issues were found.

 High

1. ETH could be locked.

The transfer function may fail if a recepient is the contract address
with fallback function. As a result, funds may be locked.

Contract: ETHPool.sol

Functions: processClaimPayment, processFee

Recommendation: stop using transfer() or send() and switch to using
call() instead.

Status: Fixed

2. Incorrect ETH recipient.

processPayment function always sends ETH to the getFeeWallet() and
never to the “recepient”

Contract: ETHPool.sol

Functions: processPayment

Recommendation: make sure you’re sending ETH to the correct address.

Status: Fixed

 Medium

No medium severity issues were found.

 Low

1. Boolean equality.

Boolean constants can be used directly and do not need to be compared
to true or false.

Contract: ETHPool.sol

Functions: unStake, claimReward

Recommendation: Remove the equality to the boolean constant.

Status: Fixed

www.hacken.io

2. Repeated function call.

calculateReward function called twice with the same arguments which
burns excess gas.

Contract: ETHPool.sol

Functions: claimReward

Recommendation: Please save the result of the first call to the local
variable.

Status: Fixed

3. A public function that could be declared external.

public functions that are never called by the contract should be
declared external to save gas.

Contracts: ETHPool.sol, Ownable.sol, PlatformFees.sol

Functions: ETHPool.stake, ETHPool.unStake, ETHPool.claimReward,
ETHPool.changeEpochTime, ETHPool.addNewEpoch,
ETHPool.upcomingWeightOf, ETHPool.getStakeInfo, ETHPool.getUserIds,
ETHPool.getUserIdIndex, Ownable.renounceOwnership,
Ownable.transferOwnership, PlatformFees.setStakeFeeNumenator,
PlatformFees.setStakeFeeDenominator,
PlatformFees.setUnstakeFeeNumenator,
PlatformFees.setUnstakeFeeDenominator,
PlatformFees.setClaimFeeNumenator,
PlatformFees.setclaimFeeDenominator, PlatformFees.setMinStakeAmount,
PlatformFees.setStakeLimit, PlatformFees.setFeeWallet

Recommendation: Use the external attribute for functions never called
from the contract.

Status: Fixed

	

	

www.hacken.io

Conclusion

Smart contracts within the scope were manually reviewed and analyzed with
static analysis tools.

The audit report contains all found security vulnerabilities and other issues
in the reviewed code.

As a result of the audit, security engineers found 1 high and 3 low severity
issues.

After the second review security engineers found that all previously found
issues were fixed but 1 high severity issue was added to the code.

After the third review security engineers found that all issues were
addressed.

www.hacken.io

Disclaimers

Hacken Disclaimer

The smart contracts given for audit have been analyzed in accordance with
the best industry practices at the date of this report, in relation to
cybersecurity vulnerabilities and issues in smart contract source code, the
details of which are disclosed in this report (Source Code); the Source Code
compilation, deployment, and functionality (performing the intended
functions).

The audit makes no statements or warranties on the security of the code. It
also cannot be considered as a sufficient assessment regarding the utility
and safety of the code, bug-free status, or any other statements of the
contract. While we have done our best in conducting the analysis and producing
this report, it is important to note that you should not rely on this report
only — we recommend proceeding with several independent audits and a public
bug bounty program to ensure the security of smart contracts.

Technical Disclaimer

Smart contracts are deployed and executed on a blockchain platform. The
platform, its programming language, and other software related to the smart
contract can have vulnerabilities that can lead to hacks. Thus, the audit
can't guarantee the explicit security of the audited smart contracts.

